This article examines state-of-the-art research into the impact of virtual reality (VR) on brain–computer interface (BCI) performance: how the use of virtual reality can affect brain activity and neural plasticity in ways that can improve the performance of brain–computer interfaces in IoT control, e.g., for smart home purposes. Integrating BCI with VR improves the performance of brain–computer interfaces in IoT control by providing immersive, adaptive training environments that increase signal accuracy and user control. VR offers real-time feedback and simulations that help users refine their interactions with smart home systems, making the interface more intuitive and responsive. This combination ultimately leads to greater independence, efficiency, and ease of use, especially for users with mobility issues, in managing IoT-connected devices. The integration of BCI and VR shows great potential for transformative applications ranging from neurorehabilitation and human–computer interaction to cognitive assessment and personalized therapeutic interventions for a variety of neurological and cognitive disorders. The literature review highlights the significant advances and multifaceted challenges in this rapidly evolving field. Particularly noteworthy is the emphasis on the importance of adaptive signal processing techniques, which are key to enhancing the overall control and immersion experienced by individuals in virtual environments. The value of multimodal integration, in which BCI technology is combined with complementary biosensors such as gaze tracking and motion capture, is also highlighted. The incorporation of advanced artificial intelligence (AI) techniques will revolutionize the way we approach the diagnosis and treatment of neurodegenerative conditions.
Read full abstract