The development of smart homes, equipped with devices connected to the Internet of Things (IoT), has opened up new possibilities to monitor and control energy consumption. In this context, non-intrusive load monitoring (NILM) techniques have emerged as a promising solution for the disaggregation of total energy consumption into the consumption of individual appliances. The classification of electrical appliances in a smart home remains a challenging task for machine learning algorithms. In the present study, we propose comparing and evaluating the performance of two different algorithms, namely Multi-Label K-Nearest Neighbors (MLkNN) and Convolutional Neural Networks (CNN), for NILM in two different scenarios: without and with data augmentation (DAUG). Our results show how the classification results can be better interpreted by generating a scalogram image from the power consumption signal data and processing it with CNNs. The results indicate that the CNN model with the proposed data augmentation performed significantly higher, obtaining a mean F1-score of 0.484 (an improvement of +0.234), better than the other methods. Additionally, after performing the Friedman statistical test, it indicates that it is significantly different from the other methods compared. Our proposed system can potentially reduce energy waste and promote more sustainable energy use in homes and buildings by providing personalized feedback and energy savings tips.
Read full abstract