There are a number of drawbacks with photochromic adhesives, including their poor durability, high price tag, and lackluster performance. On the other hand, self-healable adhesives have shown to be durable and robust than conventional alternatives. Hydrogel adhesives that change color in response to ultraviolet light were created for usage in self-healable authenticating stamps. In this context, a combination of cellulose nanofibers (CNFs), polylactic acid (PLA) and nanoparticles of lanthanide aluminate (NLA) were prepared to generate an organic-inorganic hybrid hydrogel adhesive with self-healing properties. NLA agglomerates were avoided due to the use of CNFs as a nanofiller and dispersion agent. Colorless stamps require that NLA to be dispersed consistently in the CNFs/PLA hydrogel without clumping. This film becomes green when irradiated with ultraviolet, as indicated by luminescence spectra and CIE Lab coordinates. When illuminated at 365 nm, the paper sheets emitted light with a wavelength of 519 nm. The morphologies of prints were analyzed by different analytical methods. Diameter measurements from a transmission electron microscope (TEM) of the synthesized NLA ranged from 5 to 9 nm, whereas CNFs displayed diameters of 40–60 nm. The current NLA@CNFs/PLA hydrogel presents a reliable anti-counterfeiting solution for various authenticating products.