Selective actinide ion recovery from dilute, aqueous, multication waste streams is an important problem. The recovery of uranium (U) and thorium (Th) by various animal biopolymers was examined. Of four species of biopolymers tested, a high uptake of uranium and thorium was found in hen eggshell membrane (ESM) and silk proteins, with the maximum uranium and thorium recovery exceeding 98% and 79%, respectively. The uptake of U and Th was significantly affected by the pH of the solution. The optimum pH values were 6 and 3 for the uptake of U and Th, respectively. The effect of temperature differed with the metal. The uptake of U decreased with increasing temperature (30-50 degrees C), whereas the Th uptake increased with increasing temperature. Selective recovery of U and Th from dilute aqueous binary and multimetal solutions was also examined. ESM and silk proteins tested were effective and selective for removing each metal by controlling the pH and temperature of the solution. In multimetal systems, the order of sorption of ESM proteins was preferential: U > Cu > Cd > Mn > Pb > Th > Ni > Co > Zn at pH 6 and Th > U > Cu > Pb > Cd > Mn > Co > Ni = Zn at pH 3. These biopolymers appear to have potential for use in a commercial process for actinide recovery from actinide-containing wastewater.
Read full abstract