Domoic acid, a phycotoxin produced by species of the marine diatom Pseudo-nitzschia, can cause deleterious impacts to marine food webs and human health. Domoic acid and Pseudo-nitzschia spp. were surveyed from 2016 to 2021 in the Pacific waters of Canada to assess their occurrences, concentrations, and relationships with physical and chemical conditions. Domoic acid was common, occurring in measurable concentrations in 73 % of the 454 samples. It occurred in all regions (west coast of Vancouver Island, Salish Sea, Queen Charlotte Sound / Hecate Strait, deep oceanic NE Pacific), in all years and all seasons. Median concentrations were highest along the west coast of Vancouver Island, and lowest in the oceanic waters of the NE Pacific. Winter had the lowest concentrations; no significant differences occurred between spring, summer, and autumn. High domoic acid concentrations equal to or above 100 ng/L were not common, occurring in about 5 % of samples, but in all seasons and all years except 2019. All six Pseudo-nitzschia taxa identified had similar median concentrations, but different frequencies of occurrence. P. cf. australis appeared to be the major contributor to high concentrations of domoic acid. Physico-chemical conditions were described by ten variables: temperature, salinity, density difference between 30 m and the surface (a proxy for vertical stability), chlorophyll a, nitrate, phosphate, silicate, and the ratios nitrate:phosphate, nitrate:silicate, and silicate:phosphate. Statistical analyses, using general linear models, of their relationships with the absence/presence of Pseudo-nitzschia spp. found silicate (negative) to be the most influential variable common in both the west coast of Vancouver Island and Salish Sea regions. Temperature and chlorophyll a were the most influential variables which determined the log10 abundance of Pseudo-nitzschia spp. in both regions. Analyses of the absence/presence of particulate domoic acid per Pseudo-nitzschia cell (excluding P. americana) found chlorophyll a to be the most influential variable common in both regions, whereas no common influential variable determined the log10 concentration of particulate domoic acid per Pseudo-nitzschia cell (excluding P. americana). These results were generally similar to those of other studies from this area, although this study extends these findings to all seasons and all regions of Canada's Pacific waters. The results provide important background information against which major outbreaks and unusual events can be compared. A domoic acid surveillance program during synoptic oceanographic surveys can help to understand where and when it reaches high concentrations at sea and the potential impacts to the marine ecosystem.
Read full abstract