It should be possible to separate experimentally the contributions to dielectronic recombination (DR) of energetically unresolved intermediate autoionizing Rydberg nl states using electric fields. This notion is based on two essential ideas. First, electric fields enhance the DR rate by Stark-mixing low-l states with high autoionization rates with high-l states with low autoionization rates. Second, the field at which an l state becomes Stark mixed is determined by its quantum defect, a known function of l. Consequently, the electric-field dependence of the DR rate should reflect the l dependence of the autoionization rates and thus the contributions of the zero-field nl states to the DR rate. This notion cannot be tested experimentally by examining true DR. However, it can be tested by studying DR from a continuum of finite bandwidth (CFB), for in this case the intermediate Rydberg nl states are restricted to a single value of l. Specifically, we have examined the electric-field dependence of DR from two CFB's, the Ba 6p{sub 3/2}11d and 6p{sub 3/2}8g states. In these two cases the intermediate autoionizing Rydberg states are restricted to the Ba 6p{sub 1/2}nd and 6p{sub 1/2}ng states (l=2 and 4), which have quantum defects of 0.25 and 0.02, respectively.more » For the same n they are Stark mixed at fields differing by an order of magnitude. We show experimentally that enhancement of the DR rate occurs at fields differing by a factor of 10 for nd and ng states of the same n, as expected, confirming that the field dependence of DR can be used to extract information about the contributions of energetically unresolved l states to the zero-field DR rate.« less
Read full abstract