Accurate and timely wheat yield prediction is valuable globally for enhancing agricultural planning, optimizing resource use, and supporting trade strategies. Study addresses the need for precision in yield estimation by applying machine-learning (ML) regression models to high-resolution Unmanned Aerial Vehicle (UAV) multispectral (MS) and Red-Green-Blue (RGB) imagery. Research analyzes five European wheat cultivars across 400 experimental plots created by combining 20 nitrogen, phosphorus, and potassium (NPK) fertilizer treatments. Yield variations from 1.41 to 6.42 t/ha strengthen model robustness with diverse data. The ML approach is automated using PyCaret, which optimized and evaluated 25 regression models based on 65 vegetation indices and yield data, resulting in 66 feature variables across 400 observations. The dataset, split into training (70%) and testing sets (30%), was used to predict yields at three growth stages: 9 May, 20 May, and 6 June 2022. Key models achieved high accuracy, with the Support Vector Regression (SVR) model reaching R2 = 0.95 on 9 May and R2 = 0.91 on 6 June, and the Multi-Layer Perceptron (MLP) Regressor attaining R2 = 0.94 on 20 May. The findings underscore the effectiveness of precisely measured MS indices and a rigorous experimental approach in achieving high-accuracy yield predictions. This study demonstrates how a precise experimental setup, large-scale field data, and AutoML can harness UAV and machine learning’s potential to enhance wheat yield predictions. The main limitations of this study lie in its focus on experimental fields under specific conditions; future research could explore adaptability to diverse environments and wheat varieties for broader applicability.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
39775 Articles
Published in last 50 years
Related Topics
Articles published on Unmanned Aerial Vehicles
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
38960 Search results
Sort by Recency