Parametrization of 4 ◊ 4-matrices G of the complex linear group GL(4,C) in terms of four complex 4-vector parameters (k,m,n,l) is investigated. Additional restrictions separating some subgroups of GL(4,C) are given explicitly. In the given parametrization, the problem of inverting any 4◊4 matrix G is solved. Expression for determinant of any matrix G is found: detG = F(k,m,n,l). Unitarity conditions G + = G 1 have been formulated in the form of non-linear cubic algebraic equations including complex conjugation. Several simplest solutions of these unitarity equations have been found: three 2-parametric subgroups G1, G2, G3 - each of subgroups consists of two commuting Abelian unitary groups; 4-parametric unitary subgroup consisting of a product of a 3-parametric group isomorphic SU(2) and 1- parametric Abelian group. The Dirac basis of generators k, being of Gell-Mann type, substantially differs from the basis i used in the literature on SU(4) group, formulas relating them are found - they permit to separate SU(3) subgroup in SU(4). Special way to list 15 Dirac generators of GL(4,C) can be used { k} = { i j ( iV j = K L M)}, which permit to factorize SU(4) transformations according to S = e i~a~ e i ~b~ e ikK e ilL e imM , where two first factors commute with each other and are isomorphic to SU(2) group, the three last ones are 3-parametric groups, each of them consisting of three Abelian commuting unitary subgroups. Besides, the structure of fifteen Dirac matrices k permits to separate twenty 3-parametric subgroups in SU(4) isomorphic to SU(2); those subgroups might be used as bigger elementary blocks in constructing of a general transformation SU(4). It is shown how one can specify the present approach for the pseudounitary group SU(2,2) and SU(3,1).
Read full abstract