Hyaluronic acid (HA), a glycosaminoglycan, is comprised of alternating units of D-glucuronic acid and N-acetylglucosamine. This compound harbors numerous biomedical applications, including its use in pharmaceuticals, wound healing, osteoarthritis treatment, and drug delivery. Its unique composition and exceptional features, such as its high water-absorbing and retaining capacity, have also led to its use in the cosmetics industry. The employment of this biopolymer has given rise to an escalation in the request for its manufacture. The present investigation has explored the correlation between hyaluronic acid and chitosan and silica for the purpose of separation. Consequently, Iron oxide magnetic nano particles and micro particles were produced via co-precipitation method and were layered with chitosan and silica to purify the hyaluronic acid from the fermentation broth that was generated by Streptococcus Zooepidemicus. The size distribution and zeta potentials of the two kinds of particles were gauged with the aid of a dynamic laser light scattering apparatus and zeta potential meter (Malvern, Zeta master) respectively. The confirmation of the chemical structure of the Fe3O4 nanoparticles and Fe3O4 particles conjugated with chitosan and silica was accomplished through the utilization of Fourier Transform Infrared Spectroscopy (FT-IR). Protein contamination was thoroughly characterized by means of sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Nanodrop 2000/2000c spectrophotometers protein estimation method. The maximum HA adsorption capacity, under optimal pH conditions of 4, was determined to be 87 mg/g, 112 mg/g, 51 mg/g, and 44 mg/g for Fe3O4 −chitosan nanoparticle, Fe3O4 −chitosan micro particle, Fe3O4 −silica microparticle, and Fe3O4 −silica nanoparticle, respectively.
Read full abstract