The intrinsic fluorescence of aquatic organic matter emitted at 350nm when excited at 280nm correlates widely with water quality parameters such as biochemical oxygen demand. Hence, in sewage-impacted rivers and groundwater, it might be expected that fluorescence at these wavelengths will also correlate with the microbial water quality. In this paper we use a portable fluorimeter to assess the relationship between fluorescence intensity at this wavelength pair and Escherichia coli enumeration in contrasting river catchments of poor water quality: in KwaZulu-Natal, S. Africa and the West Midlands, UK. Across all catchments we demonstrate a log correlation (r=0.74) between fluorescence intensity and E. coli over a seven-log range in E. coli enumerations on non-perturbed (unfiltered) samples. Within specific catchments, the relationship between fluorescence intensity and E. coli is more variable, demonstrating the importance of catchment-specific interference. Our research demonstrates the potential of using a portable fluorimeter as an initial screening tool for indicative microbial water quality, and one that is ideally suited to simple pollution scenarios such as assessing the impact of faecal contamination in river or groundwater at specific sites.
Read full abstract