Blind source separation (BSS) is an effective method for the fault diagnosis and classification of mixture signals with multiple vibration sources. The traditional BSS algorithm is applicable to the number of observed signals is no less to the source signals. But BSS performance is limit for the under-determined condition that the number of observed signals is less than source signals. In this research, we provide an under-determined BSS method based on the advantage of time-frequency analysis and empirical mode decomposition (EMD). It is suitable for weak feature extraction and pattern recognition. Firstly, vibration signal is decomposed by using EMD. The number of source signals are estimated and the optimal observed signals are selected according to the EMD. Then, the vibration signal and the optimal observed signals are used to construct the multi-channel observed signals. In the end, BSS based on time-frequency analysis are used to the constructed signals. Gearbox signals are used to verify the effectiveness of this method.
Read full abstract