In this paper, a two-stage framework is proposed for the energy management of microgrids, which combines a hybrid Convolutional Neural Network-Gated Recurrent Unit (CNN-GRU) forecast model and the Improved Teaching–Learning-Based Optimization (ITLBO) algorithm. The CNN-GRU model captures spatiotemporal patterns in historical data for effective renewable energy and load demand uncertainty quantification, while the ITLBO algorithm improves generation scheduling performance through utilization of adaptive luminance coefficients, Latin Hypercube initialization, and hybrid genetic operations. The proposed framework is then compared with four different forecasting models: standalone CNN or MLANN, and three popular optimization algorithms (PSO, TLBO, CO) for four cases, including baseline (perfect foresight), CNN-GRU forecast, CNN forecast, and MLANN forecast. The results show that the hybrid framework outperforms dedicated, in-domain models for forecast and scheduling, with the state-of-the-art CNN-GRU sliding window model producing the best forecasting accuracy, which subsequently translates into near-optimal scheduling performance. Through many experiments, we show that the ITLBO algorithm is robust and outperforms the classical optimization methods on convergence speed and solution quality while significantly eliminating the forecast errors uncertainty. Demand response is also a feature of these models, which boosts operational efficiency by scaling down peak grid usage without sacrificing affordability through energy saving capabilities. According to the results, the hybrid framework exhibits significant cost-efficiency by reducing the RMSE of solar irradiance forecasting by 11.6% when compared to standalone CNN and achieving a 69.7% reduction in operational costs under ITLBO optimization. The comparative analysis emphasizes the robustness and versatility of the framework, reinforcing its feasibility across a range of forecasting and optimization scenarios for real-world microgrid deployment.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
410 Articles
Published in last 50 years
Related Topics
Articles published on Uncertainty Of Renewable Energy
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
404 Search results
Sort by Recency