This study reports the effect of the not-calcining process on the bioresorption and biomineralization of hydroxyapatite through in vitro dissolution assessment. The prepared calcined hydroxyapatite (c-HAp) and uncalcined hydroxyapatite (unc-HAp) have a particle size of 2 μm and 13 μm, surface areas of 4.47 m2/g and 108.08 m2/g, and a Ca/P ratio of 1.66 and 1.52, respectively. In vitro dissolution assessments of c-HAp and unc-HAp were performed for 20 days at 37 °C in a citric acid buffer according to ISO 10993-14. During the dissolution, the c-HAp and unc-HAp confirmed an increase in weight, and the calcium and phosphorous ions were rapidly released. The calcium ions released from c-HAp formed rod-shaped particles with a longer and thinner morphology, while in unc-HAp, they appeared thicker and shorter. In the ICP-OES results, the concentrations of calcium elements were initially increased and then decreased by this formation. The rod-shaped particles identified as calcium citrate (Ca-citrate) through the XRD pattern. The calcium content of Ca-citrate particles from unc-HAp was higher than that from c-HAp. The unc-HAp demonstrated non-toxic properties in a cytotoxicity evaluation. Therefore, due to its higher bioresorption and biomineralization, unc-HAp exhibits enhanced biocompatibility compared to c-HAp.
Read full abstract