Formation of photochemical air pollution is governed in part by the solar ultraviolet actinic radiation flux, but wavelength-resolved measurements of UV radiation in polluted urban atmospheres are rarely available. As part of the 1997 Southern California Ozone Study, cosine weighted solar irradiance was measured continuously at seven UV wavelengths (300, 306, 312, 318, 326, 333 and 368 nm) at two sites during the period 1 July to 1 November 1997. The first site was at Riverside (260 m a.s.l.) in the Los Angeles metropolitan area, which frequently experiences severe air pollution episodes. The second site was at Mt Wilson (1725 m a.s.l.), approximately 70 km northwest of Riverside, and located above much of the urban haze layer. Measurements of direct (i.e ., total minus diffuse) solar irradiance were used to compute total atmospheric optical depths. At 300 nm, optical depths (mean±1 S.D.) measured over the entire study period were 4.3±0.3 at Riverside and 3.7±0.2 at Mt Wilson. Optical depth decreased with increasing wavelength, falling at 368 nm to values of 0.8±0.2 at Riverside and 0.5±0.1 at Mt Wilson. At all wavelengths, both the mean and the relative standard deviation of optical depths were larger at Riverside than at Mt Wilson. At 300 nm, the difference between the smallest and largest observed optical depths corresponds to over a factor 2 increase in the direct beam irradiance for overhead sun, and over a factor 7 increase for a solar zenith angle of 60°. Principal component analysis was used to reveal underlying factors contributing to variability in optical depths. PCA showed that a single factor (component) was responsible for the major part of the variability. At Riverside, the first component was responsible for 97% of the variability and the second component for 2%. At Mt Wilson, 89% of the variability could be attributed to the first component and 10% to the second. Dependence of the component contributions on wavelength allowed identification of probable physical causes: the first component is linked to light scattering and absorption by atmospheric aerosols, and the second component is linked to light absorption by ozone. These factors are expected to contribute to temporal and spatial variability in solar actinic flux and photodissociation rates of species including ozone, nitrogen dioxide, and formaldehyde.
Read full abstract