AbstractEcological niche differentiation is a process that accompanies lineage diversification and community assembly. Traditionally, the degree of niche differentiation is estimated by contrasting niche hypervolumes of two taxa, reconstructed using ecologically relevant variables. These methods disregard the fact that niches can shift in different ways and directions. Without means of discriminating between different types of niche differentiation, important evolutionary and ecological patterns may go unrecognized. Herein, we introduce a new conceptual and methodological framework that allows quantification and classification of niche differentiation and divergence between taxa along single niche axis. This new method, the Niche Divergence Plane, is based on species' responses to an underlying environmental gradient, from which we derive a two‐dimensional plane defined by two indices, niche exclusivity and niche dissimilarity. These two indices identify the proportion of the environmental gradient that is unique to each species, that is, how much of the environmental gradient species do not share (niche breadth exclusivity) and how different the species' responses are along the environmental gradient (niche dissimilarity). Thus, the latter can also be seen as a measure of the differences in niche preference or importance, even when there is significant overlap in niche breadth (i.e., low niche exclusivity). Based on the position of the two indices on the divergence plane, we can distinguish niche conservatism from four other general types of niche divergence: hard, soft, weighted, and nested. We demonstrate that the Niche Divergence Plane complements traditional measures of niche similarity (e.g., Schoener's D or Hellinger's I). Additionally, we show an empirical comparison using the Niche Divergence Plane framework on two Ambystoma salamanders. Overall, we demonstrate that the Niche Divergence Plane is a versatile tool that can be used to complement and expand previous methods of ecological niche comparisons and the study of ecological niche divergence.
Read full abstract