The role of gangliosides in the reception of low density lipoproteins (LDL) was studied using as targets mouse ascites hepatoma 22a (MAH) cells which bind LDL through a specific high affinity receptor. Low density lipoprotein binding and uptake by MAH cells decreased after brief treatment of the cells with neuraminidase to partially remove surface sialic acid residues. The LDL uptake capability of the neuraminidasetreated MAH cells was fully restored after incorporation of exogeneous GM1- and GD1a-gangliosides into the cell surface. In contrast, free (extracellular) gangliosides inhibited LDL uptake by native MAH cells. This inhibitory effect was seen at ganglioside concentrations corresponding to the ganglioside content of serum and was most pronounced with gangliosides whose sialic acids were linked to a terminal galactose residue (GM3, GD1a, GT1b) but was smaller or absent with gangliosides whose sialic acids were attached to an internal galactose (GM1, GM2). The binding of gangliosides to LDL was structure and concentration dependent, saturable and trypsin sensitive. The LDL-ganglioside interaction was further investigated by steady state fluorescence spectroscopy. Changes in the LDL fluorescence polarization were observed with as little as 0.01 μM concentrations of the gangliosides. The magnitude and nature of the effect depended on the type of ganglioside. We conclude that the LDL surface possesses sites recognizing specific carbohydrate sequences of glycoconjugates and that changes in the cell surface concentrations of sialic acids significantly modulate the LDL uptake. It is postulated that shedding of gangliosides into the blood stream may be a factor involved in regulation of cholesterol homeostasis.
Read full abstract