Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are primarily genetic in ~20% of patients. Mutations in C9ORF72 are the most frequent cause, but it is not understood why there is notable regional pathology. An increased burden of mitochondrial DNA (mtDNA) mutations in ALS-FTLD brains implicates mitochondrial mechanisms; however, it remains unclear how and when these mutations arise. To address this, we generated cerebral organoids derived from human-induced pluripotent stem cells (hiPSCs) of patients with ALS-FTLD harboring the C9ORF72 hexanucleotide repeat expansion alongside CRISPR-corrected isogenic and healthy controls. Here, we show a higher mtDNA single-nucleotide variant (mtSNV) burden in astroglia derived from C9ORF72-mutant organoids, with some de novo mtSNVs likely due to the C9ORF72 repeat and others evading selection to reach higher heteroplasmy levels. Thus, the functional consequences of the regional accumulation of mtSNVs in C9ORF72 ALS-FTLD brains are likely to manifest through astroglial mitochondrial dysfunction.
Read full abstract