In the past decade energy-dispersive (ED) synchrotron diffraction has evolved into a powerful tool for materials analysis. Recording complete diffraction patterns in rather few different measuring directions allows for depth-resolved analysis not only of the near-surface residual stress state, but also of composition and even texture gradients. However, since the number of synchrotron beamlines dedicated to ED-diffraction is restricted to very few instruments, alternatives have to be found which allow for ED residual stress analysis even under low flux laboratory conditions. In this project we start to establish the scientific basis for a measuring and evaluation method to make the transfer of the ED method to the laboratory dimensions possible, which is adapted to the conditions of much lower photon flux and larger beam divergences of laboratory X-ray sources. In this paper, we present the concept of an ED-diffractometer which is equipped with two detectors to enable simultaneous data acquisition for two orientations of the diffraction vector with respect to the sample reference system. The first constructive and experimental steps are presented and furthermore the possibilities and limitations of the new laboratory method and the advantages of the ED diffraction method to realize short measurement times in order to realize a high resolution of information depth are discussed.
Read full abstract