The Cryogenic Underground Test (CUTE) facility will be located 2 km underground in the SNOLAB laboratory, near Sudbury (Ontario, Canada). It is primarily designed to test the performances of cryogenic detectors of the Super-Cryogenic Dark Matter Search (SuperCDMS) experiment which will be installed next to CUTE. As a facility, it will also be accessible to scientists developing innovative cryogenic detectors for rare events search like dark matter or double-beta decay. The low temperature required to operate the cryogenic detectors is reached via an advanced dry dilution refrigerator from CryoConcept (France). The ‘Ultra Quiet Technique’ (UQT®) reduces the vibration transmission by using a proprietary gas-coupled thermal link between the two-stage pulse tube and the cryostat. In order to install the cryostat into a shielding water tank, we have developed a suspension system which decouples the cryostat from the environment with a low stiffness support, making a mechanical low-pass filter with a roll-off below 2 Hz for the vertical attenuation. We report the design choices made for the mechanical architecture to limit the vibration transmission and the material selection to achieve a low radioactive background rate in the detector. The expected background rate is less than 5 counts/day per kg of Ge detector in the 0–1 keV energy range.
Read full abstract