The dynamics of a liquid droplet impacting a liquid film of different compositions is critical for many industrial processes, including additive manufacturing and bio-printing. In this work we present an exposition of droplet impact on liquid films investigating the effects of mismatch in their properties on bouncing-to-merging transitions. Experiments are conducted for two sets of liquid combinations, namely, alkanes and silicon oils. The regime maps for impact outcomes (bouncing vs merging) are created from detailed experiments with various single- and two-liquid systems. The results highlight that the two-liquid systems exhibit an additional merging regime, which is not observed for single-liquid systems. Subsequently, the scaling analyses for transitional boundaries between various regimes are revisited, and new scaling laws are proposed to include the effects of asymmetry in the droplet and film properties. Finally, the experimental results are used to assess the performance of the proposed scaling laws.
Read full abstract