We report the structural and superconducting properties of Ge-intercalated 2H–NbSe2 polycrystals. GexNbSe2 samples with nominal 0 ≤ x ≤ 0.1 crystallize in the space group P63/mmc with Ge disorderedly occupying the interlayer Se6 octahedral interstices. Superconducting critical temperature Tc monotonically decreases from 7.2 K in NbSe2 to 4.9 K in Ge0.1NbSe2. Studies on resistivity, magnetization and specific heat derive the superconducting- and normal-state parameters, indicating that the suppression of the two-gap superconductivity is mostly caused by the lowered electron-phonon coupling parameter λe-p and density of states at the Fermi level N(EF). Surprisingly, the upper critical field Hc2 and irreversible field Hirr of the low Ge-level samples are enhanced compared with those of the undoped one, which may ascribe to the electron scattering and vortex pinning by nonmagnetic Ge. This study suggests the feasibility for improving high-field performance by slight impurity doping and advances the understanding of superconductivity in transition-metal dichalcogenides.
Read full abstract