This paper describes design techniques for a doublesided hybrid excited linear flux switching permanent magnet motor to achieve low force ripple while satisfying the required average thrust force. In this paper, we employ auxiliary poles fixed to both sides of the mover and determine the switching signal turn-on angle to reduce the force ripple in the initial design. Then, the sensitivity analysis of two split ratios is conducted to provide a feasible search direction for the optimization process. Finally, a finite-element-based optimization is utilized to minimize the force ripple and to satisfy the required average thrust force. Simulation results are validated by experimental measurement.
Read full abstract