Soil particle size distribution is a critical parameter in geotechnical and hydraulic engineering, particularly in applications such as dam seepage monitoring, building foundation assessments, and sediment transport. This study presents a novel algorithm for estimating soil particle sizes by analyzing their falling velocities in water, combining optical flow computation with chaotic motion analysis. To address the limitations of the classical Horn and Schunck method, particularly its sensitivity to large displacements and brightness variations, we introduced a coarse-to-fine warping strategy, an image decomposition step to separate dominant structures from fine textures, and the Charbonnier penalty function. The improved model achieved competitive accuracy compared to advanced optical flow algorithms. To manage turbulence and motion noise during particle settling, we incorporated a global flow analysis framework using streaklines, streak flow, and potential functions. This enabled the segmentation of laminar, turbulent, and rebound flow regions without requiring individual particle tracking. Soil particle sizes were then back-calculated from laminar flow velocities using Stokes’ Law. Experimental results confirmed the method’s accuracy for particle sizes ranging from 20 mm to 0.7 mm, significantly extending the measurable range of Sedimaging systems. The proposed approach shows strong potential for integration into dam-related particle monitoring applications and building-related monitoring systems requiring fine-resolution analysis.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
423 Articles
Published in last 50 years
Articles published on Turbulent Flow Region
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
476 Search results
Sort by Recency