In order to increase the thermal efficiency, the gas turbines are designed to operate at higher temperature, which requires highly efficient cooling structures for turbine blades. The dimples and ribs are effective surface structures to enhance the convective heat transfer in the gas turbine blade internal cooling. In the present study, a novel hybrid cooling structure with miniature V-shaped ribs and dimples is presented, and the heat transfer and pressure loss characteristics are obtained experimentally. The heat transfer performance of the rib–dimple structures, which include three different rib height-to-hydraulic diameter ratios of 0.017, 0.029 and 0.044 and one dimple configuration with the dimple depth-to-diameter ratio of 0.2, are studied by using the transient liquid crystal thermography technique for turbulent flow in rectangular channels within the Reynolds number range from 10,000 to 60,000. It is found that the miniature V-shaped ribs arranged upstream the dimples can significantly improve the heat transfer performance of the dimples, resulting in a more uniform heat transfer distribution on the surface. The V rib-dimple hybrid structure in the channel shows much higher heat transfer enhancement than the counterparts with only the dimples in the channels.
Read full abstract