CoFe bimetallic organic frameworks (CoFe-MOFs) with tunable morphology and electronic structure are synthesized in situ utilizing cobalt hydroxide (Co(OH)2) as a semi-sacrificial template and different anionic iron salts as modifying factors in a non-calcined synthesis method. This work defines the impact of three different anionic metallic iron salts (FeCl3, Fe(NO3)3, and Fe2(SO4)3) on the morphology of MOF materials and their resulting oxygen evolution reaction (OER) catalytic activity. Employing ferric chloride (FeCl3) as the metallic iron source, heterostructured electrocatalysts (BN-CoFe-MOF) with nanoparticles decorated nanoneedle tips are obtained, exhibiting a low overpotential (230 mV at 10 mA cm−2) and a Tafel slope of 105.6 mV dec−1 in 1.0 M KOH. It also demonstrates long time stability for at least 50 h at a current density of 10 mA cm−2. The investigation uncovers that the splendid OER activity and stability of the BN-CoFe-MOF heterojunction can be attributed to its large specific surface area, desirable mesoporous structure, superaerophobic characteristic, and high exposure of active centers. This work not only provides an efficient and cost-effective MOF based OER electrocatalyst but also serves as a valuable reference for future research on morphology control and strategies to enhance the OER activity of MOF catalysts.
Read full abstract