T2-weighted imaging in at least two orthogonal planes is recommended for assessment of the uterus. To determine whether a convolutional neural network-based algorithm could be used for the re-constructions of uterus axes derived from a 3D SPACE with iterative denoising. 50 patients aged 18-81 (mean: 42) years who underwent an MRI examination of the uterus participated voluntarily in this prospective study after informed consent. In addition to a standard MRI pelvis protocol, a 3D SPACE research application sequence was acquired in sagittal orientation. Reconstructions for both the cervix and the cavum in the short and long axes were performed by a research trainee (T), an experienced radiologist (E), and the prototype software (P). In thenext step, the reconstructions were evaluated anonymously by two experienced readers according to 5-point-Likert-Scales. In addition, the length of the cervical canal, the length of the cavum and the distance between the tube angles were measured on all reconstructions. Interobserver agreement was assessed for all ratings. For all axes, significant differences were found between the scores of the reconstructions by research T, E and P. P received higher scores and was preferred significantly more often with the exception of the comparison of the reconstruction Cervix short of E (Cervix short: P vs. T: p=0.02; P vs. E: p=0.26; Cervix long: P vs. T: p=0.01; P vs. E: p<0.01; Cavum short: P vs. T: p=0.01; P vs. E: p=0.02; Cavum long: P vs. T: p<0.01; P vs. E: p<0.01). Regarding the measured diameters, (length of cervical canal/cavum/distance between tube angles) significantly larger diameters were recorded for P compared to E and T (Cervix long (mm): T: 25.43; E: 25.65; P: 26.65; Cavum short (mm): T: 26.24; E: 25.04; P: 27.33; Cavum long (mm): T: 31.98; E: 32.91; P: 34.41; P vs. T: p<0.01); P vs. E: p=0.04). Moderate to substantial agreement was found between Reader 1 and Reader 2 (range: 0.39-0.67). P was able to reconstruct the axes at least as well as or better than E and T. P could thereby lead to workflow facilitation and enable more efficient reporting of uterine MRI.
Read full abstract