Atopic dermatitis (AD) is a prevalent inflammatory skin disease having a significant impact on patients' quality of life. Conventional treatments, including topical therapies and systemic immunosuppressants, often have limited efficacy and long-term safety concerns. Emerging biologic therapies target specific immune pathways implicated in AD pathogenesis, offering new therapeutic options in a disease known for its complex immune pathomechanisms. This review focuses on novel biologics under investigation, particularly those targeting specific immune pathways such as interleukin-4 (IL-4), IL-13, IL-22, IL-31, thymic stromal lymphopoietin (TSLP), and OX40-OX40L axis. Interleukin-4 and IL-13 inhibitors aim to reduce Th2-driven inflammation, while IL-22 inhibitors focus on restoring skin barrier function. Interleukin-31 inhibitors help alleviate pruritus, a major symptom in AD. OX40-OX40L pathway inhibitors can selectively suppress the activity of pathogenic T cells, without inducing significant immunosuppression. Bispecific antibodies targeting both IL-4 and IL-31 pathways are emerging as potential dual-action treatment for AD. Thymic stromal lymphopoietin inhibitors offer a novel strategy to control inflammation. While many of these therapies offer promising safety and efficacy profiles, long-term studies and real-world data are essential to confirm their lasting impact. This review highlights the potential of these emerging systemic therapies to continue transforming AD management and improve patient outcomes.
Read full abstract