AbstractUnderstanding the dynamics of the flow-dependent forecast error covariance across the air–sea interface is beneficial toward revealing the potential influences of strongly coupled data assimilation on tropical cyclone (TC) initialization in coupled models, and the fundamental dynamics associated with TC air–sea interactions. A 200-member ensemble of convection-permitting forecasts from a coupled atmosphere–ocean regional model is used to investigate the forecast error covariance across the oceanic and atmospheric domains during the rapid intensification of Hurricane Florence (2018). Forecast uncertainties in both atmospheric and oceanic domains, from an Eulerian perspective, increase with forecast lead time, mainly from TC displacement errors. In a storm-relative framework, the ensemble forecast uncertainties in both domains are predominantly caused by differences in the simulated storm intensity and structure. The largest ensemble spread in the atmospheric pressure, temperature, and wind fields can be found within the TC inner-core region. Alternatively, the largest ensemble spread in the upper-ocean currents and temperature fields are located along the cold wake behind the storm. Cross-domain ensemble correlations between simulated atmospheric (oceanic) observations and oceanic (atmospheric) state variables in the storm-relative coordinates are highly anisotropic, variable dependent, and ultimately driven by the dynamics of TC air–sea interactions. Meaningful and dynamically consistent cross-domain ensemble correlations suggest that it is possible to use atmospheric and oceanic observations to simultaneously update state variables associated with the coupled ocean–atmosphere prediction of TCs using strongly coupled data assimilation. Sensitivity experiments demonstrate that at least 60–80 ensemble members are required to represent physically consistent cross-domain correlations and minimize sampling errors.
Read full abstract