Complexes of triethanolamin with ZnCl 2 and CdCl 2 were studied using the methods of quantum chemistry and NMR spectroscopy. Triethanolamine complexes are prone to ligand exchange, which make them suitable as metal transporters. Therefore, research into the biological action of such compounds is of particular importance. 1 H and 13 C NMR spectra were recorded using a Bruker DPX250 pulsed spectrometer operated at 298 K. Non-empirical quantum-chemical calculations were performed by the B3LYP method using the Gaussian 09 software package. Changes in the chemical shifts and spin-spin coupling constants during the formation of triethanolamine complexes with heavy metals were studied. The obtained experimental data indicate that changes in the NMR spectrum shifts are accompanied by an increase in the spinspin coupling constants, with the 1 J(C, H) constants of the methylene group associated with nitrogen being the most significant. On the basis of the conducted NMR spectrum analysis, the authors propose a scheme for describing the structure and intermolecular dynamics of the complexes under study. In order to elucidate the observed changes in the NMR spectra of triethanolamine in the process of complex formation, a series of quantum-chemical calculations was carried out. Three states corresponding to mono-, bi- and tricyclic structures were taken into account. According to the obtained theoretical and experimental results, the complexes under study are characterized by intermolecular metabolic processes that lead to the averaging of NMR signals from various compounds existing in the solution. For triethanolamine complexes with CdCl 2 , the existence of bi- and tricyclic forms is equally probable. For triethanolamine complexes with ZnCl 2 , the tricyclic form seems to be more beneficial.
Read full abstract