Obesity often leads to increased systemic inflammation which is now thought to play a causative role in the development of atherosclerotic disease and insulin resistance. This inflammatory response originates within large adipose tissue depots and is initiated by classically activated macrophages that infiltrate the tissue from the circulation. The large number of macrophages residing in obese adipose tissue leads to significant increases in interleukin-6 (IL-6) and tumor necrosis factor-α (TNFα) secretion; achieving levels sufficient to elevate circulating plasma concentrations. These cytokines activate potent signals to initiate lipolysis, to release free fatty acids from triacylglycerol stores and contribute to hyperlipidemia in obese individuals. Obese adipose tissue responds to normal β-adrenergic and glucagon stimuli to recover from negative energy balance by inducing lipolysis. However, it is not clear what quantitative influence additional lipolytic stimulation by IL-6 and TNFα has on normal β-adrenergic activity. Although, β-adrenergic and cytokine signaling activate separate pathways for lipolytic activation, it is undefined whether the effects of multiple signaling events on lipolysis are additive or coincident. To clarify this issue, we measured lipolytic activity in 3T3-L1-derived adipocytes stimulated by a β-adrenergic agonist (isoproterenol), IL-6 or TNFα individually and in combinations as co- and tri-stimulation. Treatment of adipocytes with isoproterenol and either IL-6 or TNFα as co-stimulants increased lipolytic activation by approximately the sum of the individual ligands, suggesting contributions from two independent pathways. Co-stimulation with IL-6 and TNFα provided slightly more than an additive response indicating signaling contributions from independent and common pathways. Tri-stimulation resulted in the largest level of lipolytic activation with a value approximate to adding isoproterenol stimulation to a combined treatment of IL-6 and TNFα. The additive nature of cytokine signaling to β-adrenergic activity suggests its therapeutic inhibition will prevent excessive lipolysis, yet minimally interfere with maintaining normal responses to varying energy demands.
Read full abstract