Depicting the spatiotemporal dynamics of vegetation cover in the Yellow River Basin (YRB) and delineating the influences of climate change and human activities on the dynamics have been of significant importance for understanding the surface earth systems in general and also for formulating ecological protection plans of the YRB in particular. This study uses the GIMMS NDVI dataset from 1982 to 2015 and the MOD13A1 NDVI dataset from 2000 to 2021 to explore the spatial and temporal characteristics of vegetation cover in the YRB for the period from 1982 to 2021 with an attempt to reveal the influencing factors. The spatial distribution and temporal variation characteristics of vegetation cover are analyzed by maximum value composite, Theil-Sen median trend analysis, and Mann–Kendall test. Combined with the mean annual temperature and annual precipitation in the same period, influencing factors of vegetation cover in the YRB are discussed by using binary linear regression analysis and residual analysis. Results show that: (1) the multi-year average NDVI values increase from the northwest to the southeast and that the annual mean values of the vegetation covers fluctuate relatively greatly along an increasing trend with a growth rate of 0.019/(10a). Understandably, the monthly mean NDVI values show a single-peak distribution pattern, with August being the peak time (0.4936). (2) 77.35% of the studied areas are characterized by exhibiting an increasing trend of vegetation cover during the study period (i.e., 1982–2021). (3) Vegetation cover of the YRB is affected by the combined effects of climate change and human activities, with human activities being more significant in the observed amelioration of vegetation cover.
Read full abstract