BackgroundMethadone maintenance treatment (MMT) is recognized as one of the most effective treatments for heroin addiction but its effect is dimmed by the high incidence of heroin relapse. However, underlying neurobiology mechanism of heroin relapse under MMT is still largely unknown. Here, we took advantage of a resting-state fMRI technique by analysis of regional homogeneity (ReHo), and tried to explore the difference of brain function between heroin relapsers and non-relapsers in MMT.MethodsForty MMT patients were included and received a 12-month follow-up. All patients were given baseline resting-state fMRI scans by using a 3.0 T GE Signa Excite HD whole-body MRI system. Monthly self-report and urine test were used to assess heroin relapse or non-relapse. Subjective craving was measured with visual analog scale. The correlation between ReHo and the degree of heroin relapse was analyzed.ResultsCompared with the non-relapsers, ReHo values were increased in the bilateral medial orbitofrontal cortex, right caudate, and right cerebellum of the heroin relapsers while those in the left parahippocampal gyrus, left middle temporal gyrus, right lingual gyrus, and precuneus were decreased in heroin relapsers. Importantly, altered ReHo in the right caudate were positively correlated with heroin relapse rates or subjective craving response.ConclusionsUsing the resting-state fMRI technique by analysis of ReHo, we provided the first resting-state fMRI evidence that right caudate may serve as a potential biomarker for heroin relapse prediction and also as a promising target for reducing relapse risk.
Read full abstract