The present work involves a computational investigation of the elastic, thermal, and thermoelectric characteristics of Ba2MnReO6, Ba2NiReO6, and Sr2MnReO6 from the Double Perovskite family. The study verified the mechanical stability of the three compounds and investigated Young’s modulus, Poisson, bulk, and shear modulusin various stress orientations. We were also able to compute longitudinal, transverse, and average sound velocities (Vl, Vt, and Vm, in m/s), and the findings revealed that Sr2MnReO6 had a greater longitudinal velocity than the other two compounds. Thermodynamic characteristics revealed that Ba2MnReO6, Ba2NiReO6, and Sr2MnReO6exhibit low lattice thermal conductivity (Kl) at medium temperatures, strong heat absorption, and a moderate coefficient of thermal expansion.The analysis of the electron and hole charge carriers’ transport characteristics revealed that, when doped with an electron concentration close to 1020 cm−3, the two materials, Ba2MnReO6 and Sr2MnReO6, may have an excellent figure of merit surpassing 0.6 at temperatures over 600 K.
Read full abstract