The 2-Dimensional Translational Oscillators with Rotating Actuator (2DTORA) is a novel underactuated system which has one actuated rotor and two unactuated translational carts. This paper focuses on dynamical modelling and simulation analysis of the underactuated 2DTORA on a slope. Based on Lagrange equations, the dynamics of the 2DTORA is achieved by selecting a transverse position of a cart, a travelling position of a cart, and the rotor angle as the general coordinates and torque acting on the rotor as the general force. When the slope angle is set to zero, the dynamics of 2DTORA on a slope is reduced to that of 2DTORA on the horizontal plane. Moreover, by eliminating one degree of translational cart motion, the dynamics of 2DTORA is reduced to that of TORA which is a benchmark of underactuated systems. In addition, the equilibrium and controllability of the 2DTORA system on a slop are discussed. Finally, numerical simulations are performed to verify the feasibility of the developed dynamic models.
Read full abstract