The effects of the burning of fireworks on air quality in Beijing was firstly assessed from the ambient concentrations of various air pollutants (SO 2, NO 2, PM 2.5, PM 10 and chemical components in the particles) during the lantern festival in 2006. Eighteen ions, 20 elements, and black carbon were measured in PM 2.5 and PM 10, and the levels of organic carbon could be well estimated from the concentrations of dicarboxylic acids. Primary components of Ba, K, Sr, Cl −, Pb, Mg and secondary components of C 5H 6O 4 2−, C 3H 2O 4 2−, C 2O 4 2−, C 4H 4O 4 2−, SO 4 2−, NO 3 − were over five times higher in the lantern days than in the normal days. The firework particles were acidic and of inorganic matter mostly with less amounts of secondary components. Primary aerosols from the burning of fireworks were mainly in the fine mode, while secondary formation of acidic anions mainly took place on the coarse particles. Nitrate was mainly formed through homogeneous gas-phase reactions of NO 2, while sulfate was largely from heterogeneous catalytic transformations of SO 2. Fe could catalyze the formation of nitrate through the reaction of α-Fe 2O 3 with HNO 3, while in the formation of sulfate, Fe is not only the catalyst, but also the oxidant. A simple method using the concentration of potassium and a modified method using the ratio of Mg/Al have been developed to quantify the source contribution of fireworks. It was found that over 90% of the total mineral aerosol and 98% of Pb, 43% of total carbon, 28% of Zn, 8% of NO 3 −, and 3% of SO 4 2− in PM 2.5 were from the emissions of fireworks on the lantern night.
Read full abstract