AbstractHeptalene, a nonaromatic, bicyclic 12 π‐electron system with a twisted structure, is of great interest with regard to its potential Hückel aromaticity in the two‐electron oxidized or reduced forms. The synthesis of thiophene‐fused heptalene 5 from the reductive transannular cyclization of bisdehydro[12]annulene 4, and its solid‐state structure, which was confirmed by X‐ray crystallographic analysis, is presented. Chemical reduction of 5 readily generated the corresponding dianion, which was successfully isolated as [(K[2.2.2]cryptand)+]252−. The X‐ray crystallographic analysis of the dianion revealed a shallower saddle structure for the heptalene moiety and a lesser degree of bond alternation relative to 5. 1H NMR spectroscopy exposed the effect of a diamagnetic ring current on dianion 52−, which was corroborated by nucleus‐independent chemical shift (NICS) calculations. These results demonstrate that the heptalene dianion, containing 14 π‐electrons, does indeed exhibit pronounced degrees of Hückel aromaticity.
Read full abstract