This paper reports the preliminary research results of a novel automatic obstacle avoidance approach based on the COLREGs for unmanned surface vehicles (USVs). The approach presented is essentially a path searching-based algorithm called the local normal distribution-based trajectory, which plans viable avoidance trajectories in the presence of both static and dynamic obstacles. The proposed algorithm can generate a COLREGs-compliant suboptimal trajectory based on the bell-shaped curve of normal distribution and extract waypoints for the navigation controller to steer USVs safely. In addition, we discuss three key parameters and present a trajectory replanning strategy to improve the safety and flexibility of our approach. The common overtaking, crossing and head-on collision scenarios are each simulated in experiments. It is shown through simulations that the proposed approach considers multiple factors and can plan paths to avoid obstacles safely and smoothly. A comparison is also made with a reactive path planning algorithm which has been modified to follow the COLREGs.
Read full abstract