Backcalculation analysis of pavement layer moduli is typically conducted based on falling weight deflectometer (FWD) measurements; however, the stationary nature of FWD requires lane closure and traffic control. To overcome these limitations, a number of continuous deflection devices were introduced in recent years. The objective of this study was to develop a methodology to incorporate traffic speed deflectometer (TSD) measurements in the backcalculation analysis. To achieve this objective, TSD and FWD measurements were used to train and to validate an artificial neural network (ANN) model that would convert TSD deflection measurements to FWD deflection measurements. The ANN model showed acceptable accuracy with a coefficient of determination of 0.81 and a good agreement between the backcalculated moduli from FWD and TSD measurements. Evaluation of the model showed that the backcalculated layer moduli from TSD could be used in pavement analysis and in structural health monitoring with a reasonable level of accuracy.
Read full abstract