Smartphone photoplethysmography (PPG) offers a cost-effective and accessible method for continuous blood pressure (BP) monitoring, but faces persistent challenges with accuracy and interpretability. This study addresses these limitations through a series of strategies. Data quality was enhanced to improve the performance of traditional statistical models, while SHapley Additive exPlanations (SHAP) analysis ensured transparency in machine learning models. Waveform features were analyzed to establish theoretical connections with BP measures, and feature engineering techniques were applied to enhance prediction accuracy and model interpretability. Bland–Altman analysis was conducted, and the results were compared against reference devices using multiple international standards to evaluate the method's feasibility. Data collected from 127 participants demonstrated strong correlations between smartphone-derived digital waveform features and those from reference BP devices. The mean absolute errors (MAE) for systolic BP (SBP), diastolic BP (DBP), and pulse pressure (PP) using multiple linear regression models were 7.75, 6.35, and 4.49 mmHg, respectively. Random forest models further improved these values to 7.34, 5.79, and 4.45 mmHg. Feature importance analysis identified key contributions from time-domain, frequency-domain, curvature-domain, and demographic features. However, Bland–Altman analysis revealed systematic biases, and the models barely meet established accuracy standards. These findings suggest that while smartphone PPG technology shows promise, significant advancements are required before it can replace traditional BP measurement devices.
Read full abstract