Image registration is an essential step in the process of image fusion, environment surveillance and change detection. Finding correct feature matches during the registration process proves to be difficult, especially for remote sensing images with large background variations (e.g., images taken pre and post an earthquake or flood). Traditional registration methods based on local intensity probably cannot maintain steady performances, as differences are significant in the same area of the corresponding images, and ground control points are not always available in many disaster images. In this paper, an automatic image registration method based on the line segments on the main shape contours (e.g., coastal lines, long roads and mountain ridges) is proposed for remote sensing images with large background variations because the main shape contours can hold relatively more invariant information. First, a line segment detector called EDLines (Edge Drawing Lines), which was proposed by Akinlar et al. in 2011, is used to extract line segments from two corresponding images, and a line validation step is performed to remove meaningless and fragmented line segments. Then, a novel line segment descriptor with a new histogram binning strategy, which is robust to global geometrical distortions, is generated for each line segment based on the geometrical relationships,including both the locations and orientations of theremaining line segments relative to it. As a result of the invariance of the main shape contours, correct line segment matches will have similar descriptors and can be obtained by cross-matching among the descriptors. Finally, a spatial consistency measure is used to remove incorrect matches, and transformation parameters between the reference and sensed images can be figured out. Experiments with images from different types of satellite datasets, such as Landsat7, QuickBird, WorldView, and so on, demonstrate that the proposed algorithm is automatic, fast (4 ms faster than the second fastest method, i.e., the rotation- and scale-invariant shape context) and can achieve a recall of 79.7%, a precision of 89.1% and a root mean square error (RMSE) of 1.0 pixels on average for remote sensing images with large background variations.
Read full abstract