Tool wear (TW) is the gradual deterioration and loss of cutting edges due to continuous cutting operations in real production scenarios. This wear can affect the quality of the cut, increase production costs, reduce workpiece accuracy, and lead to sudden tool breakage, affecting productivity and safety. Nevertheless, since conventional tool wear monitoring (TWM) approaches often employ complex physical models and empirical rules, their application to complex and non-linear manufacturing processes is challenging. As a result, this study presents a TWM model using a convolutional neural network (CNN), an Informer encoder, and bidirectional long short-term memory (BiLSTM). First, local feature extraction is performed on the input multi-sensor signals using CNN. Then, the Informer encoder deals with long-term time dependencies and captures global time features. Finally, BiLSTM captures the time dependency in the data and outputs the predicted tool wear state through the fully connected layer. The experimental results show that the proposed TWM model achieves a prediction accuracy of 99%. It is able to meet the TWM accuracy requirements of real production needs. Moreover, this method also has good interpretability, which can help to understand the critical tool wear factors.
Read full abstract