Abstract 684276 An assessment was carried out to judge the performance of the modeled ocean currents in oil spill trajectory prediction. Ocean circulation is the key factor in determining the drift pattern of the spilled marine oil pollutant. General National Oceanic and Atmospheric Administration Operational Modeling Environment (GNOME), an oil spill trajectory model, in diagnostic mode was set for simulating drift pattern of Heavy Fuel Oil (HFO). On 28 January 2017, 0345 hrs, Indian Standard Time (IST), approximately 196.4 MT of HFO was spilled due to vessel collision. The oil spill model was set and run during 28-Jan-2017 to 05-Feb-2017 with 196 tons of HFO. Wind velocity fields were obtained from European Centre for Medium-Range Weather Forecasts (ECMWF). The modeled ocean currents were obtained from High resolution Operational Ocean Forecasting and reanalysis System (HOOFS) with two model set ups such as Indian ocean (IO) and Bay Of Bengal (BOB). Ocean current pattern were also obtained from Hybrid Co-ordinate Ocean Model (HYCOM) and Global Ocean Data Assimilation System (GODAS) based Modular Ocean Model (GM4P1). The oil drift patterns were simulated individually for the spillage due to MT Dawn vessel, by forcing GNOME with the above said wind and ocean currents. Radar data obtained for 29-Jan-2017, from Sentinel -1A was processed for detecting oil slicks. The respective drift patterns obtained were compared individually with the oil slick signatures of Sentinel -1A on 29-Jan-2017. It was found that the drift pattern obtained while using the ocean currents of HOOFS_BOB was in better agreement with that of the observed slicks. Unlike other oil drift patterns, offshore spread of the slicks are well captured while using the ocean currents of HOOFS_BOB. This paper illustrates the method of oil spill trajectory prediction using various ocean currents and validating the simulated drift with the ground truth. It also emphasize the need of using various modeled ocean currents in assessing the performance of oil spill trajectory model.
Read full abstract