This paper is concerned with the influence of camber on the noise of a wall-mounted finite airfoil with natural boundary layer transition. Tonal noise measurements taken in an aeroacoustic wind tunnel are presented for airfoils with aspect ratio of 2, NACAxx12 profile and camber between 0 and 6% at 40% chord. The results show camber is an important parameter that determines the operating conditions for which acoustic tone generation occurs and the number and intensity of the tones produced. Airfoils with 0%-2% camber have an acoustic signature that is dominated by a high amplitude primary tone, whereas the spectra of airfoils with higher camber of 4%-6% feature a more pronounced side tone structure. Tonal noise production does not collapse with lift coefficient, demonstrating that the local flow conditions influence the noise source. Tonal noise production is explained in terms of changes to mean flow topology, namely the location of flow separation, which is linked to tonal noise generation. Scaling of airfoil tonal noise is found to vary with angle of attack and pressure gradient. Empirical scaling laws for the primary tone frequency dependence on velocity are also derived for the cambered airfoils.
Read full abstract