In this work, titanium oxide nanoparticles (TiO2 NPs) and TiO2-Multi walled carbon nanotubes (MWCNTs) nanocomposites were prepared using the ball milling technique. The characterization of synthesized nanocomposite was done using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), Raman spectroscopy, and transmission electron microscopy (TEM). Dielectric constant ε1 (ω) and dielectric loss ε2 (ω) were discussed in terms of the dielectric polarization process. The Ac conductivity was increased with increasing MWCNTs amount. The charge carrier transport mechanism was interpreted using the correlated barrier hopping model (CBH). The Impedance spectroscopy showed a non-Debye relaxation in the material. The specific capacitance was increased with increasing MWCNTs concentration. Based on these detailed results, the TiO2-MWCNTs nanocomposites displayed higher specific capacitance than TiO2. In addition, the control of the current density applied onto CV measurements and MWCNTs composition of the electrodes to enhance the capacitance will open up a new strategy for the high-performance supercapacitors.
Read full abstract