Self-consistent charge density functional tight binding simulations were used to provide implications for the effect of S atoms’ doping on geometrical structures and electronic states in armchair graphene nanoribbons with different widths. The geometric configurations, energy, charge density differences, Mulliken charges, and molecular orbitals at HOMO and LUMO energy levels are characterized. Besides the changes of bond length and bond angles, the calculation results indicate that the band structures and bandgaps of the graphene nanoribbons is affected by the nanoribbon width as well as S doping positions, where the ribbons exhibit metallic or semiconductor properties. Doping S atoms result significant changes in the charge density differences and Mulliken charges on the atoms near the doped atom. At the same time, the HOMOs and LUMOs also present differences.
Read full abstract