The results of the comparative analysis of the Ti50Ni25Cu25-alloy structures produced in the initial amorphous state by rapid quenching from the melt (RQM), after severe plastic deformation by torsion under high pressure (HPT), and postdeformation heat treatment (PHT) are presented. The study was carried out using neutron and X-ray diffraction, transmission and scanning electron microscopy, and measurements of electrical properties. The initially amorphous alloy has been established to nanocrystallize after torsion under a pressure of 7 GPa to 0.5 revolutions of the anvil. Then, after 1, 5, 10, and 15 rev, the alloy again undergoes the strain-induced amorphization even with the retention, even after 5–15 rev, of a large number of highly dispersed nanocrystals less than 3–4 nm in size with a distorted B2 lattice in the amorphous matrix. Their crucial role as nuclei of crystallization provides the total low-temperature nanocrystallization during subsequent annealing starting from 250–300°C. It is shown that PHT of the alloy amorphized by HPT makes it possible to produce extremely uniform nanocrystalline (NC), submicrocrystalline (SMC), or bimodal (NC + SMC) austenitic B2-type structures in it. A complete diagram of thermoelastic martensitic transformations in the region of B2-austenite states, from nanostructured state to conventional polycrystalline one, has been constructed. The size effect on the stabilization of martensitic transformation in nanocrystalline B2 alloy has been established.
Read full abstract