The purpose of this study is to investigate the electrochemical characteristics of Sr/Si-doped hydroxyapatite coating on the Ti-6Al-4V alloy surface via plasma electrolytic oxidation(PEO).Ti-6Al-4V alloy of extra low interstitial grade disk was used as the anode and the carbon rod was used as the cathode. PEO treatment was carried out using pulsed DC power at 280 V for 3 min. The electrolyte used for PEO was prepared by mixing Ca(CH3COO)2•H2O, C3H7NaCaO6P, Sr(CH3COO)2•0.5H2O, and Na2SiO3•9H2O. The potentiodynamic polarization test were performed by potentiostat in a 0.9% NaCl solution at 36.5 ± 1°C. Electrochemical impedance tests were carried out using potentiostat at the open circuit potential in a 0.9% NaCl solution at 36.5 ± 1°C. The PEO-treated surface and corrosion morphology were investigated by field mission scanning microscopy and energy dispersive X-ray spectroscopy.The number of pores increase and average size of the pores decreased as Sr increase, and area occupied by pore was decreased. In the case of Si and Sr addition to electrolyte, corrosion potential was apparently increased compared to specimen of Sr addition to electrolyte. Polarization resistances of PEO-treated Sr and Sr/Si specimens showed the higher than those of Bulk and CaP specimens from data of electrochemical impedance test.
Read full abstract