Asymptotic and leading correction to scaling critical exponents and amplitudes have been determined for quenched amorphous Fe 90− y Mn y Zr 10 ( y=0–8) ferromagnets through an elaborate analysis of temperature dependence of spontaneous magnetization, zero-field susceptibility and low-field AC susceptibility data obtained in the asymptotic critical region. From this analysis, it is found that the values of the critical exponents and amplitudes do not depend on the alloy composition and are in good agreement with the values predicted for three-dimensional Heisenberg ferromagnet system. The observed experimental results are consistent with the concept of scaling in that the exponent equalities β= γ( δ−1) and α=2(1− β)− γ are obeyed to a high degree of accuracy. These results show that both amorphous and crystalline materials behave similarly in the critical region though amorphous alloys show a wide asymptotic critical region than the crystalline materials. The presence of disorder does not seem to have any influence on critical behavior of the system investigated in the present work.
Read full abstract