Three-dimensional excitation-emission matrix fluorescence spectroscopy (3D EEMs) has been extensively used for dissolved organic matter (DOM) characterization. However, the application of 3D EEMs is constantly limited by issues such as contradictory component identification, confusing interpretation of spectral indicators, and inability to establish biodegradability. In this study, some improvements were proposed by investigating the 3D EEMs, spectral indicators, and degradability of the standard and representative DOM. To overcome the unclear identification of DOM components, it was recommended to partition 3D EEMs into three subareas: aromatic protein (New-I), humic-like (New-II), and soluble microbial by-product-like (New-III). Significant strong positive correlations (ρ = 0.727, P < 0.001) were observed between fluorescence index (FI) and biological index (BIX), and (R = 0.809, P < 0.001) humification index (HIX) and specific ultraviolet absorbance of 254 nm (SUVA254). Except for FI (R = -0.483, P = 0.023), no other spectral indicators (P > 0.05) were found to be significantly correlated with molecular weight. As thence results, the FI and HIX were the most suitable indicators for evaluating DOM. The half-life (20 < 21 < 26 < 29 < 46 days) revealed that the degradability of individual DOM components was in the order of tyrosine > tryptophan > fulvic acid > protein > humic acid. The degradation dynamics were governed by first-order decay kinetics (R2 = 0.91–0.99). This study clarified the fluorescence properties and degradability of DOM, as well as the reliability of spectral indicators. The degradation performance of individual DOM components engaged in the carbon cycling process was revealed, paving the path for further applications of 3D EEMs in DOM research.
Read full abstract