Background: According to the World Health Organization (WHO), approximately 5% of children and 2.5% of adults suffer from attention deficit hyperactivity disorder (ADHD). This disorder can have significant negative consequences on people's lives, particularly children. In recent years, methods based on artificial intelligence and neuroimaging techniques, such as MRI, have made significant progress, paving the way for development of more reliable diagnostic tools. In this proof of concept study, our aim was to investigate the potential utility of neuroimaging data and clinical information in combination with a deep learning-based analytical approach, more precisely, a novel feature extraction technique for the diagnosis of ADHD with high accuracy. Methods: Leveraging the ADHD200 dataset, which encompasses demographic information and anatomical MRI scans collected from a diverse ADHD population, our study focused on developing modern deep learning-based diagnostic models. The data preprocessing employed a pre-trained Visual Geometry Group16 (VGG16) network to extract two-dimensional (2D) feature maps from three-dimensional (3D) anatomical MRI data to reduce computational complexity and enhance diagnostic power. The inclusion of personal attributes, such as age, gender, intelligence quotient, and handedness, strengthens the diagnostic models. Four deep-learning architectures-convolutional neural network 2D (CNN2D), CNN1D, long short-term memory (LSTM), and gated recurrent units (GRU)-were employed for analysis of the MRI data, with and without the inclusion of clinical characteristics. Results: A 10-fold cross-validation test revealed that the LSTM model, which incorporated both MRI data and personal attributes, had the best diagnostic performance among all tested models in the diagnosis of ADHD with an accuracy of 0.86 and area under the receiver operating characteristic (ROC) curve (AUC) score of 0.90. Conclusions: Our findings demonstrate that the proposed approach of extracting 2D features from 3D MRI images and integrating these features with clinical characteristics may be useful in the diagnosis of ADHD with high accuracy.
Read full abstract